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Abstract

Health-related Quality of Life (HRQoL) plays a pivotal role in patient-reported outcomes, and thus in reg-

ulatory drug approval and health technology assessment contexts. Self-reported patient narratives from

social media provide a rich source of information in order to extract HRQoL-related information which

may complement established research instruments or even overcome some of their shortcomings. In this

paper, we present work on automatically assigning intensity scores to HRQoL variables extracted from

such narratives. Intensity captures the subjectively perceived importance of a particular HRQoL dimen-

sion for a patient’s well-being, thus fostering a better understanding about how individuals are impaired

by a disease or disability in their daily life. We present two approaches towards intensity prediction based

on text classification and ranking algorithms. Our experiments show that both approaches provide viable

solutions, with F1 scores of up to 0.80 under a pairwise formulation of the problem. In a comparative end-

to-end evaluation on a discrete output scheme, both approaches are on par, with a potential advantage for

the ranking model due to a reduction in annotation complexity.

Introduction

Within the emerging paradigm of patient-focused drug development1, patient-reported outcomes

(PRO) are gaining increasing relevance in regulatory drug approval and healthcare in order to

demonstrate particular benefits of health interventions from the patients’ perspective [1]. Health-

related quality-of-life (HRQoL), defined by the WHO as comprising physical, mental, and social

well-being [2], broadens the perspective of health beyond the confined settings of clinical trials,

and therefore plays a pivotal role in PRO measurement [3].

As a latent concept, HRQoL cannot be directly observed, but needs to be operationalized via

standardized multidimensional instruments such as surveys or structured interviews which are

designed as to enable long-term follow-up by monitoring changes in self-reported HRQoL dur-

ing the patient journey [4]. Inherent limitations of such instruments may concern blind spots due

to (i) survey questions being limited to pre-defined items, and (ii) differences in the subjectively

1https://www.fda.gov/drugs/development-approval-process-drugs/fda-patient-

focused-drug-development-guidance-series-enhancing-incorporation-patients-

voice-medical
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Table 1: HRQoL domains and facets incorporated within each domain according to [2]

Domain Facets

Physical Health Energy & Fatigue; Pain & Discomfort; Sleep & Rest

Psychological Health
Body Image and Appearance; Positive Feelings; Negative Feelings; Self-esteem;

Thinking, Learning, Memory & Concentration

Level of Independence Mobility; Activities of Daily Living; Dependence on Medicine; Work Capacity

Social Relations Personal Relationships; Social Support; Sexual Activity

Environment

Financial Resources; Freedom, Physical Safety & Security; Health & Social Care;

Home Environment; Opportunities for Acquiring New Information and Skills;

Recreation & Leisure; Physical Environment; Transport

perceived relative importance of individual items or entire dimensions of HRQoL, and longitu-

dinal changes of these differences [5]. In the worst case, the above issues can mutually reinforce

each other such that continuously asking respondents the same questions may lead to getting

the same answers without substantial information increase, and possibly even without noticing

that the intensity of a seemingly unchanged HRQoL impairment increases over time, because the

importance of the respective facet has increased, e.g., as a consequence of disease progression or

changes in the treatment regime [6].

Our work addresses both these challenges by algorithmically analyzing patient-reported nar-

ratives from social media sources based on natural language processing and text analytics. Our

goal is to detect mentions of HRQoL concepts (following the WHO taxonomy as sketched in Ta-

ble 1) in such narratives and link them to self-reported disease burdens and treatment outcomes

from the same sources. Thus, we are working towards a scalable qualitative research instrument

for monitoring real-world patient needs through the lens of HRQoL concepts extracted from

unsolicited narratives on social media.

In this paper, we focus on the task of augmenting HRQoL concepts with indicators of their

subjectively perceived intensity, where intensity captures the subjectively perceived importance

that a patient assigns to a particular HRQoL facet. Depending on application and context, in-

tensity can be modeled as real-valued scores or discrete labels. In this work, we adopt the latter

option: Each HRQoL facet is assigned one of the three intensities low/basic/high importance,

signifying the magnitude of patients being affected in a particular HRQoL facet.

As our main contribution, we compare two supervised machine learning approaches towards

intensity prediction, i.e., text classification and ranking. While text classification can be con-

sidered as the obvious and straightforward approach to the problem, annotating text for discrete

intensities may be quite challenging and cognitively demanding. A more lenient approach from

the annotation perspective is to frame the task as a ranking problem. Under this formulation,

given pairwise preference annotation, a machine learning model can be trained to predict real-

valued scores for given texts, which will subsequently be decoded into discrete categories. Based

on the hypothesis that the pairwise nature of the ranking problem (compared to the three-class

schema in discrete modeling) may reduce the complexity of the task, we are interested in com-

paring the two approaches with regard to their end-to-end predictive performance.
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Related Work

Intensity prediction has gained growing attention in the NLP community, largely due to SemEval-

2018 Task 1: Affect in Tweets [7]. The task consists of five subtasks where machine learning

systems need to infer the intensity of emotion or sentiment felt by a person from their tweets

in terms of different output schemes (real-valued scores, ordinal classes, or discrete categories).

Contrary to our work, the SemEval tasks consider different target variables (emotions or sen-

timent, vs. HRQoL facets), and all annotations provided are in line with the respective task’s

output scheme.

The best-performing models in the competition, SeerNet [8] and PlusEmo2Vec [9], follow

similar approaches based on various predictive models that are trained on independent feature

sets (some of them derived from pre-trained neural networks, others from task-specific lexical

resources) and subsequently combined into ensemble models. Since the classifications datasets

are identical to the regression ones, PlusEmo2Vec does not use separate classification models but

utilizes thresholds computed from the training data or learned through polynomial regression to

map the regression scores to ordinal classes. Our work adopts a similar idea for mapping ranking

scores to discrete intensity classes, based on a fully unsupervised approach, though.

Zhang et al. [10] use the pre-trained BERT model with a task-specific output layer, but with-

out incorporating any specialized embeddings or lexical features. Despite its simplicity, the

model achieves good performance, even outperforms PlusEmo2Vec on two subtasks. Likewise,

our work also capitalizes on transfer learning, using the pre-trained RoBERTa model [11] as a

basis.

Methods for Intensity Prediction

We compare two formulations of the intensity prediction task, either as a text classification or a

ranking problem. In the following, both approaches are described in terms of model architecture,

training and inference procedures. A high-level summary of both approaches is given in Fig. 1.

Text Classification for Intensity Prediction

Though a variety of models can be used for classification, such as decision trees, support vector

machines, and neural networks, following the success of pretrained transformer language mod-

els, we use the RoBERTa model [11] for our purpose. Since RoBERTa is trained with a masked

language modeling objective, to facilitate classification, we add a classification head which con-

sists of a linear layer with tanh activation, squished between two dropout layers and a softmax

projection layer on top (cf. Figure 1a). For training, we rely on cross-entropy loss which is

computed based on the output of the softmax layer.

Pairwise Ranking for Intensity Prediction

Our ranking-based approach consists of (i) a ranking module which implements a combination

of RankNet [12] with a pre-trained RoBERTa model (denoted as Rankformer) to predict ranking

scores, and (ii) a decoder which categorizes these scores into discrete intensity labels.
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(a) Classification model (b) Ranking model

Figure 1: Model architectures: classification and ranking

Rankformer. Figure 1b depicts the Rankformer model, consisting of a ranking head on top

of the pretrained RoBERTa language model. The ranking head is identical to the classification

head except for having a regression layer on top instead of a softmax layer. The Rankformer

takes a pair of documents and their pairwise preference as input. Both documents are passed

through the pretrained RoBERTa model to obtain respective representations. Following [11],

we take the output at the first token as our document representation. The document vectors are

then passed to the ranking head to compute respective ranking scores si and sj . Regarding the

cost function, following RankNet [13], we take the sigmoid over the difference between the two

scores, followed by computing the cross-entropy loss with respect to the true pairwise preference.

As an alternative loss function, we also experiment with the pairwise hinge loss [14].

Decoder. The ranking model only predicts a real-valued score for any given document; we still

need to map the score to one of the intensity levels. In the absence of labeled data, we frame

the problem as an unsupervised clustering task using Gaussian Mixture Models (GMMs). A

GMM has two types of parameters: the mixture components’ weights (πk) and the components’

means (µk) with their covariances (Σk). Following [15], we estimate these parameters using

Expectation Maximization. Based on the hypothesis that higher ranking scores should signal

higher intensity, we map each GMM component k to an intensity level based on its component

mean µk in decreasing order.
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Table 2: Discrete annotation examples with intensity levels high/basic/low importance

High
Now, hopefully this drug will not give me any side effects like the awful joint pain that the Remicade

was giving me and I can be ALMOST normal.

Basic I had a week without pain or being sick to my stomach.

Low It wasn’t as bad as I was expecting, hardly hurt at all and I’m proud that I could inject myself.

Experiments and Results

Experimental Settings and Data Sets

HRQoL incorporates different facets of an individual’s quality of life (cf. Table 1). For the scope

of this study, we focus on the facets PAIN & DISCOMFORT, MOBILITY, NEGATIVE FEELINGS,

POSITIVE FEELINGS, and FINANCIAL RESOURCES. For each facet, we annotate data both in a

discrete and pairwise manner. Data points for annotation are sampled from a corpus comprising

anonymized patient narratives in the English language from health-related, publicly accessible

social media forums and blogs. Upstream machine learning models and knowledge graph tag-

ging are used to identify content authored by patients, as well as sentences referring to one of

the HRQoL facets mentioned above. Reject options are included in each annotation task to ad-

dress cases of HRQoL facets being erroneously selected by an upstream model. Annotation is

done at the sentence level from the perspective of self-reported importance; i.e., we evaluate the

subjectively expressed importance of the respective variable to a patient’s life.

Discrete Annotation. For the discrete case, each text is annotated for one of the intensity levels

low/basic/high importance. Assuming that patients’ narratives in social media are manifestations

of the communicative principle of relevance [16], we assign basic importance to texts which

contain a mention of the corresponding variable. For high importance, we look for linguistic

cues emphasizing the variable. Similarly, for low importance, we look for cues that downplay

the effect of the variable. Table 2 provides examples for each class.

Pairwise Annotation. In the pairwise task, annotators are instructed, given a pair of patient-

authored narratives, to judge if one expresses higher importance with respect to a certain pre-

determined QoL facet than the other. Concretely, given a text pair (A,B) and a facet Q, the label

1 is assigned to the pair if the patient-reported importance of Q in A is higher than in B, or 0

otherwise. Table 3 provides examples for each case.

Annotated Data Sets. Table 4 presents an overview of the annotated data sets resulting from

discrete and pairwise annotation. These annotations are used as follows: The pairwise annota-

tions are used for training and validating the ranking model. The discrete annotations are sepa-

rated for training and testing according to an 80%/20% split. The test split is used for evaluating

both model types as discussed in the experiments below.
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Table 3: Pairwise annotation examples with pairwise intensity labels

1
text A I cant take it because of my nose bleeds.

text B I was only on pain meds for about 3 1/2 days following the surgery and I haven’t needed them since.

0

text A I have mainly sustagen at the moment (I think my crohns is flaring because I don’t have much of an appetite,

which usually happens in a flare), and with the sustagen, I add sugar.

text B Also, ne of my fallopian tubes was completely adhered to my small bowel (explains some of the "female" pain)

Table 4: Number of annotated data points per data set and HRQoL facet

Pain &
Mobility

Financial Negative Positive IAA

Discomfort Resources Feelings Feelings (Cohen’s κ)

Discrete 1412 223 576 618 3280 0.317

Pairwise 1267 324 352 885 1134 0.324

Training and Evaluation

We train the classification model on the discrete data and the ranking model on the pairwise data

using Adam2 for optimization. Since both models are quite similar from an architectural point of

view, we use the same set of parameters3 except for the number of epochs trained which varies

with data set size. Following the sequential transfer learning paradigm, we take a fine-tuning

approach to train the models by adapting the pre-trained representations to the task-specific data.

Regarding mixture model training, we use the default settings provided by scikit-learn4 except

for the number of mixture components, which is set to the number of intensity categories. For

evaluation, we use macro-averaged F1 score per output class. In our experiments, we found

the ranking models trained with pairwise hinge loss to outperform their counterparts trained on

cross-entropy loss. Therefore, all ranking results reported below are based on the former.

Experiments and Results

Discrete Classification. Motivated by our application context, we are particularly interested

in ways to generate discrete output labels for the intensity task. To this end, both models are

compared on the test set annotated with discrete intensity scores. In order to evaluate the ranking

model on discrete data, single documents are fed to the ranking model and the ranking scores are

categorized into discrete classes. The results for this experiment are presented in Table 5 (second

and third column). Despite a natural concurrence of the task with the classification model, both

models turn out to be largely on par at an averaged F1 score of 0.61.

2https://keras.io/api/optimizers/adam/
3Classification/ranking head input size: 768; Classification/ranking head linear layer size: 3072; Dropout: 0.1;

Batch size: 16; Adam ε: 1e-8; Adam β1: 0.9; Adam β2: 0.98; Learning rate: 2e-5; Learning rate decay: linear;

Warmup ratio: 0.06.
4https://scikit-learn.org/stable/modules/mixture.html
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Table 5: Classification and Ranking results (macro-averaged F1 scores per HRQoL facet)

HRQoL Facet
Discrete Pairwise

Clf. Ranking Clf. Ranking

Pain & Discomfort 0.62 0.48 0.71 0.71

Mobility 0.55 0.74 0.59 0.82

Financial Resources 0.85 0.77 0.93 0.82

Negative Feelings 0.41 0.54 0.59 0.84

Positive Feelings 0.61 0.50 0.84 0.79

Average 0.61 0.61 0.73 0.80

Pairwise Ranking. For pairwise evaluation of both models, we transform the discrete test data

into pairwise data by generating all possible pairs with different labels. As can be seen from

Table 5 (fourth and fifth column), the ranking model yields a macro-averaged performance of

F1=0.80. With regard to individual facets, ranking performance is relatively constant, ranging

from F1=0.84 for NEGATIVE FEELINGS to F1=0.71 for PAIN & DISCOMFORT. Since the clas-

sification models expect single text as input, pairwise predictions are derived from the discrete

output by comparing individual predictions for each pair of the transformed pairwise data. This

leads to an average performance of F1=0.73 across facets (with FINANCIAL RESOURCES as a

remarkable outlier), which indicates that, even though the classification model is tailored towards

detecting finer-grained differences, it lags behind on the ranking task.

Discussion. The experiments reported here suggest that algorithmic intensity prediction on

QoL facets does not necessarily lean itself towards discrete modeling, despite its proximity to

ordinal scales as they are often used in established research instruments. In fact, our results sug-

gest to reduce the task to a pairwise ranking problem. However, the fully unsupervised decoding

approach used in these experiments prevent the ranking model from unfolding its full potential

on the discrete task. Future work should explore ways to jointly optimize the ranking and the

mixture model. As a potential advantage, the pairwise approach reduces the complexity of the

underlying annotation task to binary decisions; however, comparing inter-annotator agreement

scores for both annotation tasks reflect this effect only marginally (cf. Table 4). Interestingly

though, the pairwise ranking model shows a negative correlation with the number of available

pairwise annotations per HRQoL facet (Pearson’s ρ=-0.67), whereas such a correlation is not ob-

servable for the discrete classifier and discretely labeled data points (ρ=0.04). While this effect

clearly needs closer investigation, it might be a hint into the direction that the ranking model,

besides reducing the task complexity, also requires smaller volumes of annotated data.

Conclusion

In this paper, we have introduced the new task of predicting intensity scores for HRQoL variables

extracted from patient-reported narratives in social media, along with a comparative evaluation

of NLP model architectures towards first effective solutions.
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While HRQoL intensity may facilitate deeper understanding about how an individual’s well-

being is affected by a disease or disability as well as evaluation of corresponding treatment out-

comes and identification of unmet medical needs, it is usually not directly observable from es-

tablished survey-based HRQoL instruments. Thus, our study supports the argument that social

media data can be a valuable source to extract unsolicited patient-reported outcomes from large

online populations [17, 18].
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